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Abstract

A new computationally simple MDL approach is ad-
dressed in this paper. Unlike the eigenvalue-based MDL
methods, the proposed method suggests to use the minimum
mean square errors (MMSEs) of the multi-stage Wiener
filter (MSWF) to calculate the description length required
to encode the observed data. As a result, the proposed
method is more robust to the nonuniform noise than the
eigenvalue-based MDL methods. On the other hand, since
the proposed method does not involve the estimation of
the observed covariance matrix and its eigedecomposition,
its computational complexity can be significantly reduced.
Numerical results are presented to illustrate the consistency
and robustness of the proposed method.

1. Introduction

Computationally efficient and robust methods for source
detection are of significant interest in practical applications
of array processing [1]-[10]. This is due to the fact that,
on one hand, when a large array is employed to localize
the signals of interest (SOI) in a real-time manner, the
required computational load of the classical methods is quite
heavy. On the other hand, the assumption of spatially and
temporally white noise across such a large array might not
be true because the unknown noise environment may change
slowly with time [11], and the sensor noises thereby become
correlated from sensor to sensor and unequal in power level.
Although the sensor noises may be uncorrelated among all
sensors in many practical applications, their power levels are
in general unequal due to the nonidealities of the practical
arrays, such as the nonideality of the receiving channel,
the nonuniformity of the sensor response and the mutual
coupling between sensors. As a consequence, the sensor
noise becomes a spatially inhomogeneous white process,
i.e., of unequal power level and uncorrelated from sensor
to sensor. When implemented in such an environment, the
classical model-dependent methods, such as the classical
MDL methods [1], may fail to yield the reliable estimate
of the number of sources in a real-time manner.

While there have been some papers, such as [4]-[8],

dealing with the robust estimation of the number of sources,
these methods need to be further improved in computational
complexity and/or detection performance. The eigenvector-
based methods, such as [8], can yield the reliable esti-
mate of the number of sources in the nonuniform noise
environment. Similar to the eigenvalue-based methods [1],
however, the eigenvector-based methods necessarily involve
the estimation of the observed covariance matrix and its
EVD calculation, making them to be quite computation-
ally intensive. Although the MDL method addressed by
Fishler and Poor [7] is robust against the deviations from
the assumption of spatially and temporally white noise, it
involves N iterations and each iteration needs the EVD
computation, thereby requiring around O(N 4) flops besides
the calculation of the covariance matrix, which is rather
computationally burdensome especially when N becomes
large. Recently, we addressed a computationally efficient
Gerschgorin disk estimator for source number without eigen-
decomposition (GDEWE) in [6]. The GDEWE method is
more robust and computationally efficient than the classi-
cal methods for source enumeration. Nevertheless, like the
GDE estimator, the detection performance of the GDEWE
estimator also relies on a non-increasing function that needs
to be carefully designed in the practical applications.

In this paper, a novel computationally efficient MDL
method is addressed for the detection of source number.
In contrast to the eigenvalue-based MDL methods, the
proposed mMDL method only involves the MMSEs of the
MSWF [14] to calculate the code length of the observed
data, independent of the eigenvalues of the observed co-
variance matrix. As a result, the mMDL method is more
robust to nonuniform noise than the eigenvalue-based MDL
methods. Meanwhile, the proposed method does not involve
the estimation of the observed covariance matrix and its
EVD computation, requiring lower computational cost than
the EVD-based methods, particularly for a large array.

2. Data Model

Consider an array of N sensors receiving q (q < N −
1) narrow-band far-field sources from distinct directions
θ1, · · · , θq. For simplicity, we assume that the array and the
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sources are in the same plane. In the sequel, the `th snapshot
vector consisting of the sensor array outputs, excluding the
last sensor output, can be written as

x(t`)=[x1(t`), · · · , xM (t`)]
T=A (θ)s(t`)+n(t`), (1)

where M = N−1, (·)T denotes the transpose operation and

A (θ) = [a(θ1), · · · , a(θq)] M × q steering matrix;
s(t`) = [s1(t`), · · · , sq(t`)]

T q × 1 source waveform vector;
n(t`) = [n1(t`), · · · , nM (t`)]

T M × 1 sensor noise vector.

For a uniform linear array (ULA) with inter-sensor
spacing d, the steering vector may be given as
a(θi) =

[

1, ej2πd sin(θi)/λ, · · · , ej2πd(M−1) sin(θi)/λ
]T

(i =
1, · · · , q) where λ denotes the wavelength and q denotes
the unknown number of sources. The source waveform
si(t`) (i = 1, · · · , q) is assumed to be a jointly station-
ary, statistically uncorrelated, zero-mean complex Gaussian
random process. Meanwhile, the additive noise n(t`) is as-
sumed to be an ergodic, zero-mean, spatially and temporally
white complex Gaussian process with the covariance matrix
σ2

nIM . In addition, the sensor noise is presumed to be
uncorrelated with the sources.

Under these assumptions, the observed data x(t`) is a
complex Gaussian random process with zero mean and the
covariance matrix:

Rx = E[x(t`)x
H(t`)] = A (θ) RsA

H (θ) + σ2
nIM , (2)

where E[·] represents expectation, (·)H is the Hermitian
transpose and Rs = E[s(t`)s

H(t`)] denotes the signal
covariance matrix. In the practical applications, however,
only the finite number of snapshots is available. In the
sequel, the sample-covariance matrix is calculated by R̂x =
(1/L)

∑L
`=1 x(t`)x

H(t`).

3. Proposed MMSE-Based MDL Estimator

It is shown in [1] that, for a given data set and a family
of probabilistic models, the MDL principle is to select the
model that offers the shortest description length of the data.
Specifically, given an observed data set X = {x(t`)}

L
`=1

and a probabilistic model p(X|Θ), where Θ denotes an
unknown parameter vector of the model, the shortest de-
scription length required to encode the data using the model
can be asymptotically written as

L{x(t`)} = − log p(X|Θ̂) +
1

2
K log L, (3)

where Θ̂ is the maximum likelihood (ML) estimate of Θ

and K denotes the number of free parameters in Θ̂. Since
the observed data {x(t`)} are assumed to be statistically
independent complex Gaussian random vectors with zeros

mean, their joint probability density can be given by

p(X|Θ) =

L
∏

`=1

1

πq‖Rx‖
exp

{

−x(t`)
H

R
−1
x x(t`)

}

,(4)

where ‖·‖ is the determinant operation. Taking the logarithm
of (4) and omitting the terms independent of Θ, we define
the negative log-likelihood function as

F(Θ) = L log ‖Rx‖ + tr
(

R
−1
x R̂x

)

. (5)

To proceed to the derivation of the MMSE-based MDL
method, we need to use the following results of the MSWF.
The MSWF is given in Appendix A.

Lemma 1: The determinant of the observed covariance
matrix Rx0

is equal to that of Re, the covariance matrix of
the error of the MSWF, i.e.,

‖Rx0
‖ = ‖Re‖ =

M
∏

i=1

ρi, (6)

where Rx0
, E[x0(t`)x

H
0 (t`)], Re ,

diag
(

[ρ1, · · · , ρM ]T
)

, and ρi , E[|ei(t`)|
2] (i =

1, · · · , M) is the MMSE at the ith stage of the MSWF.
Proof: The proof of Lemma 1 is easily completed by

following the results in [12]-[14], and omitted here due to
the space limit.

Lemma 2: The MMSEs of the MSWF ρi (i = 1, · · · , M)
satisfy

ρ1 ≥ · · · ≥ ρq > ρq+1 = · · · = ρM = σ2
n, (7)

where σ2
n is the noise variance and q denotes the true number

of sources.
Proof: It is easy to prove Lemma 2 by using the results

of [6] and [10]. The proof of Lemma 2 is omitted due to
the space limit.

In the sequel, updating the observed covariance matrix
Rx by Rx0

, substituting (6) and (7) into (5), and assuming
that k is the supposed number of sources, we obtain

F(Θ) =L log

(

k
∏

i=1

ρi ×

M
∏

i=k+1

σ2
n

)

+ tr
(

R
−1
x0

R̂x0

)

. (8)

On the other hand, it follows from Appendix A that the free
parameter vector can be given by

Θ
T =

(

ρ1, · · · , ρk, σ2
n, w1, · · · , wk, h1, · · · , hk

)

, (9)

where wi (i = 1, · · · , k) are the scalar Wiener Filters in the
backward recursion of the MSWF and hi (i = 1, · · · , k) are
the matched filters in the forward recursion of the MSWF.
Actually, not all the free parameters are independent of
each other. It follows from the MSWF given in Appendix
A that both ρi and wi rely on the desired signals di(t`)
which are obtained by filtering the observed data with the
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matched filter hi, i.e., di(t`) = h
H
i x0(t`). In the sequel,

the parameter vector can be finally reduced to be

Θ
T =

(

σ2
n, h1, · · · , hk

)

. (10)

On the other hand, notice that the matched filters hi (i =
1, · · · , k) are the orthogonal and normalized vectors, which
lead to a reduction of (2k + 2(1/2)k(k− 1)) in the free pa-
rameter number. As a result, the number of free parameters
in Θ can be counted as

K =2Mk+1−2k−2(1/2)k(k−1)=k(2M−k−1)+1. (11)

It is easy to show that the estimated MMSE yielded by the
backward recursion of the MSWF, ρ̂i = σ̂2

di
−|δ̂i+1|

2/ρ̂i+1,
is the ML estimate of ρi. Consequently, it follows from (7)
that the ML estimate of σ2

n can be given by

σ̂2
n =

1

M − k

M
∑

i=k+1

ρ̂i. (12)

Therefore, substituting the ML estimates of ρi (i =
1, · · · , k), σ2

n and Rx0
into (8) and (3), omitting the constant

terms and applying the same argument used in [1] yields

L{x(t`)}=Llog

(

k
∏

i=1

ρ̂i×

M
∏

i=k+1

σ̂2
n

)

+
1

2
k (2M − k − 1)log L

, F(k) + P(k), (13)

where

F(k) =L (M − k) log







1/ (M − k)
∑M

i=k+1 ρ̂i
(

∏M
i=k+1 ρ̂i

)1/(M−k)






(14)

P(k) =
1

2
(k(2M − k − 1)) log L, (15)

are the log-likelihood function and the penalty function,
respectively. Thus, the number of sources can be yielded
by minimizing the MMSE-based MDL (mMDL) criterion:

q̂ = arg min
k=0,··· ,M−1

mMDL(k), (16)

where mMDL(k) = F(k) + P(k).
Remarks: As noted in Section I, the EVD-based MDL

methods [1] necessarily involve the estimate of the covari-
ance matrix and its EVD computation, which require around
O(N2L)+O(N3) flops. To correctly detect the sources, the
rMDL method [7] do not terminate the iterative procedure
until a stationary point is reached, generally requiring N
iterations, and each iteration includes the EVD computation
of an updated covariance matrix. As a result, the rMDL
method needs around O(N 4) flops besides the calculation
of the observed covariance matrix that also requires O(N 2L)
flops. However, in the proposed mMDL method, the MMSEs
of the MSWF can be directly yielded from the MSWF,
avoiding the estimate of the covariance matrix and its EVD

computation. Meanwhile, note that the forward recursion
procedure only involves complex vector-vector products,
and does not include any complex matrix-vector products,
thereby requiring around O(M)(M =N − 1) flops for each
snapshot and each stage. In the sequel, after performing
N forward recursions, the required computational cost is
only about O(N2L) flops. Meanwhile, it should be noted
that the backward recursion only involves complex scalar-
scalar products that are fiddling in computational complexity
compared to the complex vector-vector products. Therefore,
the mMDL method requires much less computational cost
than the EVD-based MDL methods [1], [7].

4. Numerical Results

Assume that there exist 2 narrow-band sources impinging
upon a ULA with 10 sensors. Meanwhile, the inter-sensor
spacing is equal to half wavelength. We first consider the
scenario where the sensor noise is a stationary, spatially and
temporally white, Gaussian random process that is uncorre-
lated with the sources. In this case, the SNR is defined as
the ratio of the power of signals to the power of noise at
each sensor. Five hundred independent trials have been run
to calculate the empirical probabilities of correct detection of
the mMDL, cMDL and rMDL methods. Fig. 1 demonstrates
the empirical results of the three MDL methods versus
the number of snapshots. Observed that as the number of
snapshots tends to infinity, the proposed mMDL method,
the cMDL method [1] and the rMDL method [7] converge
to one in probability of correct detection. This thereby
indicates that all the MDL methods are consistent for the
case of spatially and temporally white noise. Nevertheless,
when the number of snapshots is less than 200, neither the
mMDL nor the rMDL method [7] is as accurate as the
cMDL method [1]. As addressed in [7], the rMDL method
is less accurate than the cMDL method because it ignores
the a priori knowledge that the sensor noise is spatially
and temporally white. Note that the mMDL method only
employs 9 sensor outputs as the observed data to calculate
the MMSEs of the MSWF, reducing the aperture of the array
from 10 to 9, and is thereby less accurate than the cMDL and
rMDL methods as the number of snapshots varies from 60 to
200. When L ≤ 60, however, the proposed mMDL method
surpasses the rMDL method and is very close to cMDL
method in detection performance. Fig. 2 shows the empirical
probability of correct detection versus the angle separation.
Again, due to the reduced aperture of the array, the proposed
mMDL method only yields the lower accurate estimation of
the source number than the cMDL method when the angle
separation varies from 3◦ to 5.5◦, and is as accurate as the
latter when the angle separation becomes larger. While the
rMDL method is a little more accurate than the mMDL
method for small angle separation, it needs 10 iterations and
each iteration involves the EVD computation of the updated
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Figure 1. Probability of correct detection versus num-
ber of snapshots for the case of spatially white noise.
[θ1, θ2] = [2.5◦, 7.8◦], SNR = −3dB, N = 10.
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Figure 2. Probability of correct detection versus angular
separation for the case of spatially white noise. [θ1, θ2] =
[2.5◦, 2.5◦ + ∆θ], SNR = −3dB, L = 150, and N = 10.

covariance matrix, thereby requiring about O(104) flops
besides the calculation of the observed covariance matrix
that still needs O(100L) flops. However, the mMDL method
only needs around O(81L) flops which is much less than
that of the rMDL method. Therefore, the small loss of the
mMDL method in detection performance can be balanced
by its computational simplicity.

To examine the robustness of the mMDL method, we have
performed five hundred independent trials to calculate the
probability of correct detection for the case of nonuniform
noise. Similar to [7], the noise power level is taken as

σ2
nIN+(σ2

n/2)diag([−0.9,−0.7,−0.5,−0.3,−0.1, 0.1, 0.3, 0.5, 0.7, 0.9])
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Figure 3. Probability of correct detection versus number
of snapshots for the case of nonuniform noise. [θ1, θ2] =
[2.5◦, 7.8◦], SNR = 0dB, N = 10.
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Figure 4. Probability of correct detection versus angular
separation for the case of nonuniform noise. [θ1, θ2] =
[2.5◦, 2.5◦ + ∆θ], SNR = 0dB, N = 250, and N = 10.

to simulate the deviations of up to 3dB from the normal
noise power level σ2

n. In this scenario, the SNR is defined
as the ratio of the power of signals to the averaged power of
noises. Fig. 3 depicts the empirical probabilities of correct
detection varying with the number of snapshots. It is implied
in Fig. 3 that both the mMDL method and the rMDL method
can correctly detect the sources as the number of snapshots
increases infinitely. The eigenvalue-based cMDL method,
however, fails to correctly enumerate the sources as the
number of snapshots is greater than 100. Moreover, as the
number of snapshots increases, the empirical probability of
correct detection of the cMDL method converges to zero.
This thereby implies that both the mMDL method and
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the rMDL method offer the robustness whereas the cMDL
method is of non-robustness in this scenario. To demonstrate
the detection performance of the MDL methods for different
angle separation, we plotted the empirical probability of
correct detection varying with the angle separation in Fig. 4.
Similarly, the cMDL method fails to correctly detection the
sources no matter how large the angle separation is. Nev-
ertheless, since the mMDL method only uses the MMSEs
of the MSWF instead of the eigenvalues, it is more robust
against the deviations than the eigenvalue-based cMDL
method. Thus, the mMDL method is superior to the rMDL
method in computational complexity and outperforms the
cMDL method in robustness and computational complexity.

5. Conclusions

We have addressed an MMSE-based MDL method for
source number estimation in this paper. Since the proposed
mMDL method only involves the forward and backward
recursions of the MSWF, and avoids the estimation of the
observed covariance matrix and its EVD calculation, giving
it the advantage of computational simplicity. Additionally,
since the unequal noise power levels at the sensors only
make the smallest eigenvalues to be significantly unequal
but scarcely affect the smallest MMSEs of the MSWF, the
proposed MDL method is more robust against the deviations
from the assumption of spatially and temporally white noise
than the eigenvalue-based MDL methods.
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Appendix A.
The MSWF

The full-rank MSWF is presented as follow:
Initialization:

d0(t`) = xM+1(t`),
x0(t`) = [x1(t`), · · · , xM (t`)]

T .
Forward Recursion: For i = 1, · · · , M :

rxi−1di−1
= E[xi−1(t`)d

∗

i−1(t`)];
δi = ‖rxi−1di−1

‖2, hi = rxi−1di−1
/δi;

di(t`) = h
H
i xi−1(t`), σ2

di
= E[|di(t`)|

2];
xi(t`) = xi−1(t`) − hidi(t`).

Backward Recursion: For i = M, · · · , 1 with ρM =
E[|dM (t`)|

2] and eM (t`) = dM (t`):
wi = δi/ρi;
ei−1(t`) = di−1(t`) − w∗

i ei(t`);
ρi−1 = σ2

di−1
− |δi|

2/ρi.
Here we use ‖ · ‖2 and | · | to denote the Euclidean norm of
a vector and the absolute value of a number, respectively.
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